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It is pointed out that the existing equations for the rate of sedimentation 
of an aggregate of particles from a flow give values that are lower than 
the experimentally measured values. A new equation is derived theoretical- 

ly for the rate of sedimentation of an aggregate of drops. The results are 
in good agreement with experiment. 

The technological processes of separating concentrated heterogeneous systems are wide- 
ly employed in petrochemical, petroleum refining, and oil production industries. Calcula- 
tions of such processes are based on adequate determination of the average rate of sedimen- 
tation of an ensemble of particles. A quite accurate theory of sedimentation of a single 
solid spherical particle in a gravitational field and an approximate semiempirical theory 
of sedimentation of an ensemble of particles, which takes into account the crowding of the 
particles, have now been developed. Among the equations describing the rate of sedimenta- 
tion, it is important to note Tem's equation [I] 

U = U s t  (2 - -  3~ )  2 ' ( 1 ) 

and the Mod-Whitmer equation 

U = Ust(1 -- r 

which satisfy the conditions ~ > 0.05 and r < /o/(ghp), 
a liquid-liquid system [2] 

(2) 

as well as Hankel's equation for 

U = U t  31%(1--~1/3)(1--~5/3)+~( 3 -  29 ~i/3+_~_9 qo5/3__3~ ) 
2~,p (1 --qo 5/~) + ~e (3 + 2~ 5/3) ' (3) 

where Ust = (2/9)(Apqr2/pc) is Stokes equa[ion for the rate of sedimentation of a single 
spherical particle. The latter equation is also used to calculate the rate of sedimentation 
of many particles under the conditions ~ ~ 0.05 and r < /a/(gAp). 

Calculations using Eqs. (I) and (2) for q > 0.05 showed that the values obtained for 
the rates of sedimentation are lower than the experimental values. In particles, Eq. (3) 
gives a rate of sedimentation that is two to three times lower than the experimental value 
(Fig. 1). 

The aim of this investigation is to see if it is possible to describe adequately the 
rate of sedimentation of many drops in a liquid-liquid system for the case when their hydro- 
dynamic fields interact. 

It should be noted that any spherical particle in a dispersed flow is surrounded by 
a symmetric layer of close-lying particles. If the radius of such a spherical cloud is 
equal to l (Fig. 2), then it can be assumed that all parameters of this field reach ex- 
trema in a sphere of radius l /2. This makes it possible to construct spherical cellular 
models with a free surface of the extremal conditions. 
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Fig. I. The rate of sedimentation as 
a function of the volume fraction of 
dispersed particles and comparison 
with experimental data: i) calcula- 
tion using Eq. (2); 2) calculation 
using Eq. (3); 3) calculation using 
Eq. ( 1 2 ) .  

In the theoretical analysis of the motion of drops in a flow we make the following 
assumptions: 

a) The flow around the particles is viscous, which follows from the condition that the 
Reynolds number is small Re = [Udl(a/v) ~ i, and is described, to a first approximation, 
by the linear Stokes law (F s = 3~a "U d, where U d = U - Uf and Uf is the flow velocity); 

b) the drops are strictly spherical; in the case when the drops can become deformed 
it is necessary to introduce a shape factor and in the case when the drops are polydis- 
persed each fraction must be studied separately; 

c) the average distance between the particles, determined according to the equation 
in [3] 

l ~ - - a r  
(4) 

is large compared with the sizes of the particle, so that the particles do not collide with 
one another and they do not coagulate, though the hydrodynamic fields around the drops can 
interact with one another; and, 

d) the motion of a drop is not affected by forces arising owing to transfer of drops 
as a result of turbulent and buoyant migration, as well as by electric, thermophoretic, 
diffusophoretic, and other forces of a nonhydrodynamic nature, with the exception of the 
force of gravity, under whose influence the sedimentation of the particles occurs. 

The motion of the drops in the flow is described by the Navier-Stokes equation, which 
characterizes both the external and internal steady flows in the drop 

div P = ~c~V~, (5 )  

as well as by the equations of continuity 

divv c = 0, divv~ = 0. (6 )  

T r a n s f o r m i n g  t o  s p h e r i c a l  c o o r d i n a t e s  in  Eqs.  (5)  and (6)  and o m i t t i n g  t h e  s i m p l e  bu t  l a b o r i -  
ous calculations, by analogy to [4] we obtain analytic expressions for the velocity dis- 
tribution in the continuous and discrete phases. For the final solution we formulate the 
boundary conditions for Eqs. (5) and (6). 

Under the conditions of steady motion, spherical drops having the same sizea, and mov- 
ing in the horizontal plane I-I drop over an infinitesimal time dT over a distance dz, i.e., 
to the plane II-II (Fig. 2). As the drops move they free up a space, equal to n(~aZ/4) - 
dz, which is filled by a continuous liquid which flows into this space with an average 
velocity v t in the transverse section I-I of the sedimentation tank. Therefore we can 
write 

nfd.z = - -  v t(F - -  n f )  dT, ( 7 ) 

where  f = g a 2 / 4  i s  t h e  t r a n s v e r s e  c r o s s - s e c t i o n a l  a r e a  o f  t h e  d rop  and F i s  t h e  f r e e  c r o s s  
s e c t i o n  o f  t h e  work ing  zone  o f  t h e  t a n k .  
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Fig. 2. 

We note that dz/d~ is the absolute velocity U of the drops. 
be put into the following form: 

hence we obtain; 

Diagram illustrating the arrangement of drops in the flow. 

Thus expression (7) can 

dTdZ U --  TJ t ( nf , (8) 

F 
vt ) 

(9) 

Setting �9 = nfa/Fa, we obtain from Eq. (9) 

U 
v t = - -  (lO) 

Thus at a distance r § a+l]2 the velocity distribution in the liquid medium satis- 
fies the condition 

=- cos O, v w ----- - -  U ' 1 ' sin O, (11 ) 

where O is the spherical angle, and v r and v~ are the normal and tangential components of 
the velocity. Aside from the conditions (ii), we also employ the condition that on the 
surface of the drop r = a the normal and tangential stresses are equal, and the normal 
components of the velocity of the exterior and interior liquids vanish on the surface of 
the drop. Without analyzing the solution to (5) and (6), given in [4], but using the new 
condition (ii), we obtain finally an expression for the velocity of crowded sedimentation: 

U = 1,SU~t (1 -- ~) ~ - -  ( 3 ~  + 2~o) (1 + k) ~ + 2 (F~ + ~o) ( i + k)~ 
( 3 ~  + 2~c ) (1 + k) 3 ' ( 1 2 )  

where k = 3/6.2/8~.. As follows from Fig. i, the rate of crowded sedimentation (12) de- 
scribes better the experimental data of [5] than do Eqs. (2) and (3). 

+ 0 and k + ~ the relation (12) transforms into the In the particular case when 
formula of Hadamard-Rybchinskii: 

l i m U : 3 U s t  ~ e + ~  

If ~ m Pc, the average rate of sedimentation of concentrated systems of solid particles 
is determined in the form 

u =  1---t~t (1--~) 1--3(1 + k)~+2(1 +kp 
2 (1 + /@ (13) 

If ~" + 0 and k + ~, then Eq. (13) transforms into Stokes equation lim U = Ust and in the 
~0 

limit ~ + 1 and U + 0 sedimentation of the particles does not occur. 

For polydispersed particles the size distribution of the particles P(a) must be taken 
into account when determining the average rate of sedimentation. If it is assumed that 
the average drop size satisfies the expression 
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a~ = ~" aP (a) da, 
o 

then Eq. (12) can be used to calculate the average rate of sedimentation. 

NOTATION 

Here a is the diameter of the drops; r is the radius of drops or the coordinate; P 
is the pressure; U is the rate of sedimentation of the drops; v c is the velocity of the 
drops; o is the surface tension at the interface of the phases; p is the dynamic viscosity; 
p is the density; Ap is the difference of the densities of the dispersed particle and the 
medium; ~ is the volume fraction of particles. The index ~ designates a dispersed plane 
and the index c designates a continuous phase. 
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INFLUENCE OF ADSORBED LAYERS ON THE ELECTRICAL CONDUCTIVITY OF 

DISPERSED SYSTEMS 

D. E. Gutso and V. M. Kiseev UDC 537.311:542.937 

We present the results of an experimental investigation of the effects of ad- 
sorbed layers on the conductivity of a charge of finely divided nickel par- 
ticles. 

The use in technology and industry of an increasing number of dispersed working media 
requires a satisfactory theoretical description of the physical and physicochemical pro- 
cesses which occur in them. The transport of heat, mass, and electrical charge in dis- 
persed media are of considerable interest. There is a broad literature devoted to a 
description of transport phenomena in dispersed media, some examples of which are found 
in [I-3]. In turn, the shortage of experimental material prevents a realistic descrip- 
tion of the physical processes. 

The goal of the present work is to clarify the effect of adsorbed layers on the 
transport of electrical charge in dispersed media. 

Different physical mechanisms contribute to the electrical conductivity of a dispersed 
medium. One is metallic conductivity along individual particles and across the metallic 
contacts between them. Another is activation conductivity, resulting from gaps between 
particles, with adsorbed gases oxidized on the particle surfaces. In contrast to metallic 
conductivity, activation conductivity is characterized by a negative temperature coefficient 
of resistivity. The dynamics of the dependence of the electrical resistivity of a dispersed 
medium upon temperature will be investigated in the experiments described below. 
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